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RATIONAL PULSE-SHAPING FILTERS FOR 
ALMOST MSK-LIKE MODULATION 

1.  INTRODUCTION 

MSK-like modulation formats are those for which (a) the instantaneous phase of the transmitted 
signal changes by exactly 90° in each bit interval, and (b) the instantaneous amplitude (or envelope) of 
the transmitted signal is constant. Well-known members of this family include MSK [1] (minimum- 
shift keying), SFSK (sinusoidal frequency-shift keying) [2], and DSFSK (doubly sinusoidal frequency- 
shift keying) [3]. These formats are used where a constant envelope is needed but with a sharper spec- 
tral roUoff than is provided by rectangular QPSK (quadriphase-shift keying). Rectangular QPSK rolls 
off asymptotically at 6 dB/octave, MSK rolls off at 12 dB/octave, SFSK at 24 dB/octave, and DSFSK at 
36 dB/octave. The width of the main spectral lobe is greater for the formats with the sharper asymp- 
totic spectral rolloffs. Of these formats, only MSK is easily generated, and consequently MSK is used 
regularly both for data communication and for radar pulse compression with binary-coded sequences. 
The other formats, desirable for their lower spectral sidelobes, generally require complex filters or pre- 
cision voltage-controlled oscillators, making them difficult to implement, or rely on digital signal- 
generation methods, making them unsuitable for high-speed operation. 

In this report, simple implementations are sought not by looking for simple approximations to 
existing modulation formats in the MSK-like class, but by searching within a particular easily imple- 
mented class for those modulation formats that come closest to being MSK-like. This approach resulted 
in several new modulation formats that (a) change phase by 90° in each bit interval; (b) have almost 
constant envelope; and (c) can be implemented to good approximation using low-order rational transfer 
functions to filter in-phase and quadrature NRZ (nonreturn-to-zero) waveforms. These new formats 
were derived by first starting with the class of waveforms that can be generated by passing in-phase and 
quadrature NRZ waveforms through identical filters with rational transfer functions, modulating the 
two waveforms onto quadrature carriers, and summing. Further restricting the class of waveforms con- 
sidered to those that change phase by 90° in each bit interval, the locations of the singularities of the 
transfer functions of the pulse-shaping filters were optimized with respect to the mean of the fourth 
power of the signal amplitude with signal energy constrained to be constant. This resulted in modula- 
tion formats with very small variations in amplitude. 

If small amplitude fluctuations were not present, these modulation formats would be MSK-like. I 
use the term almost MSK-like to refer to modulation formats, such as those presented here, that have 
such small amplitude variations that they can be treated as MSK-like for all practical purposes, I refer 
to the optimum almost-MSK-like modulation formats presented in this report as RSK, for rational-shift 
keying. The term rational emphasizes that these formats, unlike the MSK-like formats, can be gen- 
erated with rational pulse-shaping filters. The -shift keying emphasizes the similarity to the MSK-like 
formats. The term is more mnemonic than accurate, however, for the instantaneous frequency shift of 
RSK signals cannot be described as a rational function. Nevertheless, I use the term RSK here for lack 
of a more descriptive, equally concise term. To differentiate between the various RSK formats 
described in this report I will use the order of the associated pulse-shaping filter. This report derives 
fourth-, sixth-, and eighth-order RSK formats. 

Manuscript approved November 5, 1984. 
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The remainder of this report is organized into five sections. The section following this introduc- 
tion establishes notation and provides the minimum background necessary to understand the remainder 
of the report. The class of modulation formats optimized is then developed. The optimization criterion 
used to choose the best formats within that class is then presented, followed by a presentation of the 
RSK formats that resulted from the optimization process. The summary includes the RSK parameters 
in tabular format for convenient reference. Various lengthy mathematical details are relegated to 
appendixes. 

2.  BACKGROUND: QUADRATURE DATA-MODULATION FORMATS 

In this section I describe several related modulation types as a vehicle for establishing notation. I 
first describe a very general modulation format, and then I describe various subsets of that format until 
I have described the class of modulation formats optimized in the following sections. 

QAM 

Consider amplitude modulating a carrier with a complex modulation function m{t), where* 

m(t) = lit) + jqit), 

with lit) and qit) real, and 

Scit) = Re{mit) e'""''] = iit)cos(i)ct - qit)s'm(Oct. (1) 

This is referred to as quadrature amplitude modulation or QAM. The complex modulation function m it) 
can be recovered from Scit) if mit) is band-limited to frequencies w > —w^. Conversely, any real 
Si-it) with no DC component can be generated with a suitable mit). Thus, QAM is a very general 
modulation format; all of the modulation formats discussed in this report are special forms of QAM. 

QPSK 

QPSK, or quadriphase-shift keying, is a form of QAM in which 

mit) = AeJ'l' "^a^pit - 2mT), (2) 
m 

with each a„€ {l,J,— l,—j] and with pit), termed the baseband pulse Junction, satisfying 

Tjpid + 2kT) = 8„ ' (3) 

(8^- is the Kronecker delta function) for some fixed delay d and scale factor TJ. The latter condition is 
the time-domain equivalent of Nyquist's second criterion and is required to prevent intersymbol 
interference, i.e., to ensure that at times t = d + IkT only one term contributes to the sum in Eq. (2). 
If p it) is a rectangular pulse of width 2 T, so-called rectangular QPSK results. The term QPSK itself is 
reserved by some authors for rectangular QPSK. 

QPSK is frequently used in data communication, where bits are made available for transmission at 
rate T'^. Bits are grouped into pairs, and each pair is mapped into one of the a„, with each of the four 
permutations of two bits mapped into one of the four possible values for the a„. Rectangular QPSK is 
also occasionally used in radar pulse compression, where the quaternary sequence {«^} Is carefully 
chosen to have desirable autocorrelation properties. There is no reason why nonrectangular QPSK 
could not be used in pulse compression as long as the amplitude of the baseband pulse function p it) 
decayed quickly in either direction from the peak. 

•The unit imaginary quantity is represented in this report by j rather than ;.   This is common in the literature of electrical 
engineering and here permits the conventional use of / for in-phase. 
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The conventional implementation of QPSK effectively rearranges Eq. (2) to obtain 

m(.t) Y^a^git- ImT) ®fit). (4) 

where ® indicates convolution, and where g(t) ®f{t) = pit) of Eq. (2). The gate function g{t) is 
defined by 

g{t)=U{t)- U{t-2T), (5) 

where U{t) is the unit-step function, i.e., git) is equal to unity for 0 < f < 2r and zero everywhere 
else. Thus, the bracketed sum in Eq. (4) is just a pair (real and imaginary parts) of NRZ digital 
waveforms. Since fit) is nearly always a purely real function, the QPSK implementation correspond- 
ing to this formulation is as shown in Fig. 1. The convolution of Eq. (4) is implemented by passing the 
two NRZ data streams derived from the a„ through pulse-shaping filters with impulse responses fit). 
The upper and lower signal paths in Fig. 1 are referred to respectively as either the / and q channels or 
arms. The pulse-shaping filters in the / and q channels are referred to in the remainder of this report 
by their conventional names, the / and q arm filters. 

i  DATA 

l2Tl 

q  DATA 

'        I 
I 

ARM FILTERS 

\ 

— sin wjt 

Fig. 1 — Conventional QPSK implementation 

OQPSK 

Attempts in the data-communication community to develop modulation formats less susceptible 
to degradation in nonlinear transmitters led to the development of staggered ox offset Q?S¥^, abbreviated 
OQPSK. OQPSK is identical to QPSK except that the imaginary part qit) of the modulation function 
mit) in Eq. (2) has been offset in time from the real part /(/) by time T. This reduces the extreme 
envelope fluctuations in s^it) of Eq. (1) suffered by ordinary QPSK (especially if nearly rectangular) 
whenever a„ = -a„_i in Eq. (2). 

A mathematical formulation of OQPSK in terms of the m it) of Eq. (2) is clumsy.   OQPSK is 
more concisely defined as QAM with 

m (?)= J^PJ"'pit-mT), (6) 

where each /3„€ {1,-1}, and where pit) is constrained as for ordinary QPSK above.   The {^„} in Eq. 
(6) might typically be chosen for data transmission as 

fim-\  to send a 1 
■/3„_i  to send a 0, (7) 
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where /3o is chosen arbitrarily.  OQPSK is not any less suited to radar pulse compression than ordinary 
QPSK. 

The factor Ae-'"'' of Eq. (2) was omitted in Eq. (6) in the interest of brevity. It should be under- 
stood that OQPSK and any of the modulation formats described subsequently can have an arbitrary 
amplitude-and-phase factor added. 

The OQPSK formulation of Eq. (6) can also be rewritten to explicitly indicate the use of arm 
filters on NRZ data streams: 

mW = . "ZPmrgit- mT) ®f(t). m 
The corresponding implementation is given in Fig. 2. The only difference between Figs. 2 and 1 is that 
in Fig. 2 the q data stream has been offset from the /' data stream by time T. The data values fed to 
the arm filters in Fig. 2 are related in a simple way to the {p„} of Eq. (8), but the details are 
unimportant here. 

i DATA 
' 

i2Ti   1   :   1 

1   '   '   1   1 
''ill 

q DATA     1        1        1 

1        1                 1 
1        1                 1 

I i(t) 

ARM  FILTERS dy- s,(t) 

f(t) 
q(t) 

-sin «J(.t 

Fig. 2 — Conventional offset-QPSK implementation 

It is interesting to note that for baseband pulse functions satisfying 

7)pid + mT) = 8„ (9) 

for some fixed delay d and scale factor 17 (compare to the Nyquist criterion of Eq. (3)), 
mid + kT) = ± jmid + (k - 1)T), i.e., the OQPSK signal undergoes a net phase change of exactly 
90° in each bit interval. The subset of OQPSK discussed in the next section will satisfy this condition. 

MSK-Like Formats 

What considerations are involved in creating a constant-envelope OQPSK signal, that is, in mak- 
ing |/«(r)p = 1 in Eq. (6) using a real baseband pulse function p(t)'! Answering this question requires 
looking at the properties of |m(r)p.  Take mit) as given by Eq. (6) and multiply by its conjugate: 

\mit) |2 _ m it) m*it) = £ -^p^lS„]>"-"pit - mT)pit - nT), (10) 

where the * superscript indicates complex conjugation.   Since the {/S^} are data-dependent, and thus 
unpredictable, the only way \mit)V can have a predictable value is if the only terms that contribute to 
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the  double  sum  of Eq.   (10)   are  those  for  which   m = n.    The  resulting  requirement  is  that 
pit — mT)pit — nT) = 0 for all t and m ^ n.  With some simple substitution this becomes 

pit) pit- mT) = 0;   m ^ 0, 

which is easily seen to be equivalent to :^^.   -. 

pit) = 0;   \t- to\ > T (11) 

for some to, i.e., pit) can only be nonzero over an interval of 27 in t.  Using this assumption that only 
terms for which m = n can contribute to the sum of Eq. (10), Eq. (10) becomes 

\m it)\'='£^pHt-mT). (12) 

Notice that this is periodic with period T. To force |m(f)p to unity it will, therefore, be adequate to 
force it to unity over one period. Since Eq. (11) is assumed satisfied, only two terms of Eq. (12) con- 
tribute at any one time.  Focusing in on one particular interval of width T, 

\mit)\^ = pHt)+pHt+T)\   to- T^ t < to. (13) 

Equating this to unity produces the second constant-envelope requirement, 

pHt) + pHt + T) = l-   to- T ^ t < to. (14) 

Equations (11) and (14) are the two conditions that are frequently cited as defining the MSK-like sub- 
set of the OQPSK modulation formats (often with to set to 0). The most well-known modulation for- 
mat of this class is minimum-shift keying, or MSK, described by Eqs. (6) and (7) and 

pit) = cos y^;   \t\ < T. 

A close inspection of this definition reveals that MSK is also a special case of FSK (frequency-shift key- 
ing), with Scit) of Eq. (1) having frequency CD^ + TT/IT while a data 1 is being transmitted and fre- 
quency ojc — v/2T while a data 0 is being transmitted. The "minimum" in minimum-shift keying 
refers to the tone spacing n/T, which is smaller than that used in most FSK systems. 

There are two other well-known MSK-like modulation formats: SFSK  (sinusoidal FSK)   [2], 
described by 

/ X vt \     .      llTt 
pit) = cos   Yr~J^^^~Y~ 

and DSFSK (doubly sinusoidal FSK) [3], described by 

\t\ < T, 

pit) = cos TTt       I    .    l-iTt   .    I     .    A-rrt sm ——- + —— sm 
2r     3 r      24 T 

\t\ < T. 

SFSK and DSFSK are not discussed further except for comparison of spectral roUoff properties with 
RSK below. 

3.  THE CLASS OF BASEBAND PULSE FUNCTIONS OPTIMIZED 

Suppose an MSK-like modulation is desired using the implementation strategy outlined in Fig. 2. 
Further, suppose an implementation is desired with the Laplace transform of fit), denoted by Fis), a 
rational function of 5. (Throughout this report, upper and lowercase letters refer to the Laplace and 
time domains.) This would be necessary if the arm filters were to be implemented using conventional 
lumped-constant filter technology. Are there any obvious requirements on Fis) that can be deduced 
from the constant-envelope conditions derived above? 
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Equation (11) requires that pit) be supported only over a finite interval. This implies that P{s) 
can have no poles. Since Pis) = Gis)Fis), Fis) can have poles only where Gis) has zeros (located 
at 5 = ± J kTT /T, k = 1,2= ...). The number of zeros of Fis) can be determined by the desired 
spectral-rolloff properties of Pis). Since there is no point to this exercise unless the spectrum of the 
resulting baseband pulse function rolls off faster than for rectangular QPSK, Fis) should have at least 
one more pole than it has zeros.  Fis) can therefore be expressed as 

_<Ti,s + PI, 

^^'^       ^   s^+ikTrlT)^' 

where the cr's and p's are real and only a finite number of terms have nonzero cr and p. Cascading this 
Fis) with Gis) effectively substitutes a (smaller) set of zeros in place of some (finite) set of the zeros 
of Gis). The most obvious choice of a set of zeros to replace* is the set of 2n zeros in the region of 
the s-plane where Gis) is generally the largest, i.e., near s = 0, effectively making the above sum 
range from k = \ io k = n. The zeros of Fis) can be further restricted by requiring or^. = 0 in the 
expression above. Necessary for computational feasibility, this constrains the zeros of Fis) to occur in 
pairs on the axes (real or imaginary) symmetric about the origin; this is convenient for certain popular 
realization strategies. The following results: 

i^\  s"- + ikn/Tr 

The effect on pit) of this last restriction is to forc§ it to be symmetric in time, i.e., 
p{tQ + t) = pitQ- t). It is worth noting that all of the well-known MSK-like modulation formats are 
symmetric in time. 

The class of functions described by Eq. (15) can be described more conveniently for the purposes 
of this report as 

The additional constant factor and the change from p^ to k^Ok will allow simpler expressions below, 

Although the use of arm filters described by Eq. (16) in the OQPSK configuration of Fig. 2 
results automatically in the satisfaction of the condition expressed in Eq. (11), it does not automatically 
result in the satisfaction of Eq (14). An optimization criterion will therefore be chosen in the following 
section that can be used to choose the coefficients {a^} in Eq. (16) so that either Eq. (14) is satisfied, 
or, more likely, Eq. (14) is nearly satisfied. There are two other constraints that need to be satisfied. 
One is the Nyquist criterion of Eq. (3), necessary to prevent intersymbol interference. The remaining 
constraint, necessary to ensure that the OQPSK signal experiences a net phase change of 90° in each bit 
interval, is given by Eq. (9). Notice that any function pit) satisfying Eq. (9) satisfies the Nyquist cri- 
terion of Eq. (3) automatically. For baseband pulse functions satisfying Eq. (11) the additional condi- 
tion 

pit^ 9^ 0 (17) 

is sufficient (though not necessary) to ensure that Eq. (9) is satisfied. A reasonable strategy, therefore, 
is to perform the optimization first and then check to see whether Eq. (17) (or, if not Eq. (17), then 
Eq. (9)) is satisfied. 

'Although it would be interesting to explore optimum arm-filter functions with zeros at various other combinations pf the low- 
frequency zeros of GU), such a task is beyond the scope of this investigation, 
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It is convenient to express the optimization criterion in terms of pit). To find the baseband pulse 
function pit) implied by the transfer function of Eq. (16), the impulse response corresponding to Eq. 
(16) is first calculated by inverse Laplace transforming Fis) (in a region of convergence Re{s} > 0): 

fit) = ^ Uit) t ka, sin -^. 

To obtain the pulse function pit), convolve fit) with the rectangular driving function git). Because 
/(/) is periodic with period 2T equal to the width of the gate function git), the convolution will equal 
zero for f ^ 2 T: 

Pit)=  f   fiT)git-T)dT = git)J fiT)dT, 
-oo 0 

or, performing the integration, ' 

pit)^git)'^2ak 
k-l 

1 — cos 
knt (18) 

It is interesting to note that if this pulse function were extended by letting the number of terms « in 
the sum approach infinity, it would become a Fourier series capable of representing any function that 

(a) was real with finite-energy, 

(b) had support only over the interval 0 < f < 2r, and '      ■ - 

(c) was symmetric with respect to / = T, i.e., piT + t) = piT — t).       l 

4.  THE OPTIMIZATION CRITERION 

The optimization criterion used to optimize the {a^} of Eq. (18) must be one which tends to 
represent the amplitude fluctuations in the OQPSK signal generated with the baseband pulse function 
of Eq. (18). To be able to deal with such quantities as "the average fluctuation" more precisely, it is 
helpful to reformulate the complex modulation function mii) of Eq. (6) as a random process. Let the 
transmitted data symbols j8„ be independent random variables with the two possible values equiprob- 
able, and interpret the summation over the index m as ranging from m = -°otom = °o. Make this 
random process stationary by inserting a random delay u, uniformly distributed from 0 to T. These 
changes produce 

mRit)=Y.^J'"pit-mT-u);  «~U(0,r). 
m 

The subscript on the function niR it) indicates a random process. 

(19) 

Given this formulation, one obvious strategy is to choose the {a^} of Eq. (18) to minimize the 
variance of \mRit)\ while holding the mean of \mnit)\ constant. Unfortunately, the mean of \mRit)\ 
is difficult to calculate. A slightly modified strategy proves easier: choose the {a^} of Eq. (18) to 
minimize the variance of |m/{(?)p while holding the mean of \mRit)V constant. The extra squaring 
has the added benefit of increasing the "penalty" associated with large envelope fiuctuations. Appendix 
A shows that the mean of I m^} (?) p is 

£{|m^(?)P} = 8 
n z 

k-\ 
Ok + 4 £ al 

k~\ 
(20) 
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and the variance of I/Mjj (/) P is ., 

r      n      n 

2^ even (k) even (/) 8^._, Var{U;j(/)|2}=  ±±± takOia^a, 
k-l (-1 m-1 r-l 

- 2  8<._,6„_f 

+ 2^eve«(A:+/) (   8^+,+„_,+ 8^+,_„+, 

+ ^k+i- m- r+ Syt- i+m+r 

'^^k-i+m-r'^^k-i-m+r 

+ ^k-i-m-r) (21) 

where the function even () is defined to be unity if its integer argument is even and zero otherwise. 
Equations (20) and (21) will be evaluated separately below for the 4th-, 6th-, and 8th-order arm filters 
discussed in the next section. 

Optimization Constraints to Control Spectral Rolloff 

Since F(s) in Eq. (16) has, in general, two more poles than zeros, its magnitude rolls off asymp- 
totically with frequency at 12 dB/octave. Since G{s) rolls off at 6 dB/octave, Pis) rolls off at 18 
dB/octave, faster than the 12 dB/octave of MSK but slower than the 24 dB/octave of SFSK. If faster 
spectral rolloff than 18 dB/octave is needed, the {oi^] will have to be further constrained during optimi- 
zation to force F(s) to have fewer zeros. 

To see what these constraints are, it is helpful to express the arm-filter transfer function Fis) of 
Eq. (16) as a ratio.  Giving F(s) a common denominator produces 

k-l r-1 

F(s)-^ ;r-^ -,   -^ (22) 
'' Yls^+ikn/Ty ■ 

k-\ 

Before trying to put the numerator of this expression in the fqrm of a single polynomial in s, consider 
expanding the simpler product, 

Jlis + b,). 
k-\ 

This expands into a nth-degree polynomial in s, where the coefficient of s"~'" is 

with ^^ defined to be the set of all combinations of m of the integers between 1 and n. When m is 
zero, '^H, is defined to contain only a single, empty combination.  This makes the product of the [bjj 
empty, and thus equal to the identity element for multiplication: unity. Using this approach, the coef- 
ficient of s^'-"~ "^ in the expansion of 

fls'+iin/T)^ 
k-l 
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j-2^2 

'2 'Je*^ 
5r2 •••       ;^2 

1M.'2 '™l€*, 

('1'2 •• 
n 
71 

./J^ 

To modify this to take account of the / ^ k condition in the product in the numerator of Eq. (22), 
replace the set of combinations ^^^ with a modified set 0^'* defined to be the set of all combinations 
of m of the integers between 1 and n excluding k. The expression above will then give the coefficient 
of s2(n-m-i) jj^ ^j^g expansion of the product. Again, ©o"'* is the set containing only the empty combi- 
nation.  Equation (22) can now be rewritten as 

iTT^ 
m-0 

■ m- -1) 
_ 2m      n 

;2m     I^^«^                 I               ('I'-' ■ij' 

j2 
f[s^+ ikn/T)^ 
k-\                                                ■■: -    — 

Fis) = -^  ""       "     " . (23) 

To obtain faster spectral rolloff of the baseband pulse function than 18 dB/octave requires con- 
straining the {a^} in the optimization process so that the degree of the numerator of the arm-filter 
transfer function of Eq. (23) is reduced to less than 2« - 2. To reduce the degree of the numerator by 
two to gain an additional 12 dB/octave requires setting the coefficient of the highest degree term in the 
numerator to zero, 

f^k^a,  =0. '     <■    ^^-^r-.   .-;     :; ^   (24) 
k-\ 

Notice that the rightmost sum in Eq. (23) contained only an empty product. To reduce the degree of 
the numerator of Eq. (23) by four to gain 24 dB/octave requires Eq. (24) and setting the next coeffi- 
cient to zero by requiring 

±k'a, ti'-O. (25) 
k-l /-I 

The only limit to the number of such constraints that can be applied is that at least one degree of 
freedom among the {a^-} must remain for optimization. 

5.  THE RSK MODULATION FORMATS 

The optimization of the {0^} of Eq. (16) (and Eq. (18)) according to the optimization criterion 
developed above is discussed separately below for 4th-, 6th-, and 8th-order arm filters. In each case, 
the following information is given: 

• A name for each format, RSK(m,n), where m and n indicate the numbers of zero pairs and pole 
pairs in the rational transfer function. 

• The optimum coefficients {0^.} for use in Eqs. (16) and (18). 

• A plot of the baseband pulse function ;7(f) given in Eq. (18). 
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• A plot of one period of the magnitude of the complex-baseband OQPSK signal of Eq. (6).  This is 
given by Eq. (13) with to = T. 

• The normalized zero locations {z^} and gain y for the following factored equivalent of Eq. (16): 

^(s) = y   '^"';   ' \i . (26) 

m n 
k-l 

Ts 
^k 

2 

+ 1 

i n n 
k-l 

Ts 
kn 

+ 1 

• A plot of the spectral density of the OQPSK process of Eq. (19), shown in Appendix B to be 

- sin^ n 7-    ii 
S.  . . (fl r) = 4y^ 

'"R'"R ill 

m HT 
2- 

11 
fc-i 

1- 
Zfc 

n fir 
2 

11 
k=\ 

1 - 
k-n 

(27) 

The spectral densities are shown in a form in which the spectral level is given as a function of a 
dimensionless frequency variable 0,^= ilT. This has the effect of making the density dimension- 
less as well.* 

All of the above items except the plots are repeated in tabular form in the Summary. 

Fourth-Order Arm Filters 

Fourth-order arm filters are obtained by setting n = 2 in Eqs. (16) and (18).  Evaluating Eq, (20) 
with n = 2 yields the mean squared amplitude 

E{\mR(t)\^}=l2a^ + I6aiai+Ual (28) 

Similarly, evaluating Eq. (21) with n = 2 yields the variance of the squared amplitude 

Var{|/wj,(Op}= 13602^ + 256aiai + 64al si - 64afa2 + Sat. (29) 

The optimization problem can be formulated using a Lagrange multiplier.  Define the Lagrangian 

L = Var{|m^(r)P}-/x(£{|/««(/)P}- 1) (30) 

or, substituting from Eqs. (29) and (28), 

L = 136a2^ + 256oia| + 640? a^ - 64a^ 02 + 8af 

+ /Li(12a| -I- 16aia2+ 12a? - I). 

The variable (j. is a Lagrange multiplier introduced to force the factor that it multiplies to equal zero in 
the optimization solution. The optimization now proceeds by setting the gradient of the Lagrangian 
(with respect to the three variables a^, a2, and ix) to zero and solving for the stationary points of the 
Lagrangian. Computing the gradient and equating to zero produces 

0= 256a| + 128aia| - 19201^ cj + 32flf 4-^(1602 + 240,) 

0= 544a| +l()%axal + 128a? 02" 64a? +/i(24a2+ 16ai) 

0= 12a2^ -f 16aia2+12a? - 1. 

*0f course, if the pulse function were to be given units, the corresponding normalized spectral densities would have units as well. 
For example, if p it) were expressed in volts, the corresponding normalized spectral density would have units of volts^ 

10 
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Solving this set of simultaneous equations numerically produced the stationary points given in Table 1. 
The negative of each solution shown is also a stationary point (of the same type and with the same vari- 
ance) due to the symmetry of the problem. As the choice of the sign oipit) is irrelevant in most prac- 
tical applications, only one of each such pair of solutions is given. 

Table 1 — Lagrangian Stationary Points 
with rt = 2 

fll aj Var{|wfi(?)P} 

0.25143 0.05195 5.85147 X 10"^ 
0.31903 -0.37636 0.16243 
0.38542 -0.22858 0.70375 
0.05863 -0.32443 1.02166 

A discriminant test on the constraint equation 

1202^ + 16aia2 + 12a? = 1 

shows that it describes an ellipse in the (auOj) plane. Since it describes a closed line, the global 
minimum of the variance on that line is just the stationary point for which the variance is smallest, i.e., 

01 = 0.25143,   fl2= 0.05195. 

The baseband pulse function obtained by substituting these values into Eq. (18) with n = 2 is plotted 
in Fig. 3. Since it is nonzero in the center as required by Eq. (17), it satisfies the 90° net-phase-change 
criterion of Eq. (9) and the Nyquist (zero-intersymbol-interference) criterion of Eq. (3) automatically. 
Figure 4 shows the i{t) and qit) waveforms of Fig. 2 that would result from using the arm filters that 
correspond to this baseband pulse function. 

Fig. 3 — Baseband pulse function from optimum fourth-order arm filter 

Figure 5 shows one period of the magnitude (calculated using Eq. (13)) cf the complex-baseband 
OQPSK signal of Eq. (6) using the baseband pulse function of Fig. 3. This shows that the square root 
of the sum of the squares of the / and q waveforms of Fig. 4 would fluctuate less than 1% from its 
mean. The amplitude variations are so small as to be practically negligible. 

If the transfer function of the arm filter is put into the factored form of Eq. (26), there is one pair 
of imaginary zeros (m = \) and the gain constant and zero location are given by 

y = 0.606768,  zi= 1.62557TT. 

11 
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i(t) 

q(t) 

Fig. 4 — Typical i and g waveforms using tlie fourth-order arm filters 

1.01 

Fig. 5 — One period of the envelope of the fourth-order RSK signal 

The spectral density of the fourth-order RSK process is shown in Fig. 6 along with the spectral 
density of the MSK and SFSK processes, for comparison. All three densities are normalized to unit 
total power. The RSK density appears to be between the MSK and SFSK densities in several ways: 
spectral density at zero frequency, width of main spectral lobe, height of first sidelobe, and asymptotic 
roUoff rate. Thus, the fourth-order RSK modulation format can be used where a compromise between 
the spectral properties of MSK and SFSK is needed. 

Fig. 6 — Spectral densities of fourth-order RSK (solid), 
MSK (dashed), and SFSK (chain-dashed) 

12 
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Sixth-Order Arm Filters 

Sixth-order arm filters are obtained by setting n = 3 in Eqs. (16) and (18). Evaluating Eq. (20) 
with n = 3 yields the mean squared amplitude ., ,,        .. -   - 

E{\mR{t)\^}= Uai +4ax(4a3 + 4a2) + 160203 + 12a| + 120^ 

Similarly, evaluating Eq. (21) with n = 3 yields the variance of the squared amplitude 

Var{|mj?(/)p} = 803* + 12802^ 03^ - 128010203^ + 64af aj + 256a|a3+ 160aia2^a3 

- 192a? 0203 + 32a^ 03 -I- 136a2^ -I- 256aia| + 6401^ a| - 64af a^ + 8a/. 

The optimization of this variance with only a mean-squared amplitude constraint would lead to a 
pulse pit) with an asymptotic spectral rolloff rate no better than that associated with the fourth-order 
problem solved earlier. The extra degree of freedom inherent in the sixth-order problem would be 
expected to lead to a solution with lower variance, but, since the variance obtained by the simpler 
fourth-order solution is adequate for any practical application, there is little point in looking for a higher 
order filter function with the same rolloff rate. To obtain a higher rolloff rate, the constraint given by 
Eq. (24) can be used to force the sixth-order transfer function F{s) to have four more poles than 
zeros. Solving Eq. (24) (with « = 3) for a, gives 

a\= — 9a3 — 4a2- 

Substitution of this expression for Ci into the expressions just given for the mean and variance of the 
squared amplitude gives the constrained mean 

E{\mR{t)V] = %mal +67202^3 + 140a2^ 

and the constrained variance 

Var{|OT^(f)P} = 3435203^ + 99072a2a| + 102176a2^ a^ + 42880a2^ 03 + 628002^ 

The optimization problem can now be formulated using a Lagrange multiplier. The use of the 
Lagrangian form given in Eq. (30) with the constrained mean and variance above gives 

L = 3435203^ + 99Q12a2al + 102176a2^ a} + 42880a| aj + 6280a2^ 

■^ IxiUOal +ei2a2a3 + UQal-\). ,.    ;   ., . 

Computing the gradient of this Lagrangian and equating it to zero produces three simultaneous non- 
linear equations in three unknowns: 

0 = 99072a| -H 204352a2a3^ + 128640a2^ 03 + 25120a2^ 

-l-|A (672a3 + 280a2) J '" 

0 = 137408a| + 29721602^3 + 204352fl2^ 03 +42880a| 

+ /X (1680a3 + 672a2) 

0 = 84003^ + 6720203 + 140a| - 1. 

Solving this set of simultaneous equations numerically produced the stationary points given in Table 2. 
Again, due to the symmetry inherent in the problem, the negative of each solution shown is also a sta- 
tionary point. 

13 
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Table 2 — Lagrangian Stationary Points with 
« = 3 and Oi Constrained 

fll 02 03 Var{ mK(t)^ 

0.29031 
-0.18456 
0.04338 
0.34040 

0.04595 
0.42203 
0.34356 

-0.29482 

-0.05268 
-0.16706 
-0.15751 
0.09321 

6.56782 X 10~^ 
0.47046 
0.94788 
1.12266 

A discriminant test on the constraint equation 

840a| + 67202^3 + 140^2^ = 1 

shows that it describes an ellipse in the (02, ^3) plane. Since it describes a closed line, the global 
minimum of the variance on that line is just the stationary point for which the variance is smallest, i.e., 

ai = 0.29031,  02 = 0.04595,  03 =-0.05268. 

The baseband pulse function obtained by substituting these values into Eq. (18) with n = 3 is plotted 
in Fig. 7. Since it is nonzero in the center as required by Eq. (17), it satisfies the 90° net-phase-change 
criterion of Eq. (9) and the Nyquist (zero-intersymbol-interference) criterion of Eq. (3) automatically. 

Fig. 7 — Baseband pulse function from 
optimum sixth-order arm filter ^ 0 4 

The pronounced dip in the middle of the pulse function shown in Fig. 7 is consistent with the 
relativley large (squared-amplitude) variance implied by Table 2. This effect is shown more clearly in 
Fig. 8, which shows one period of the magnitude (calculated using Eq. (13)) of the complex-baseband 
OQPSK signal of Eq. (6) using the baseband pulse function of Fig. 7. While this high envelope ripple 
may be intolerable in some applications, it may be possible to tolerate it in others in order to obtain the 
associated spectral characteristics given in Fig. 9. 

The spectral density of the sixth-order RSK process in Fig. 9 is shown along with the spectral den- 
sity of the SFSK and DSFSK processes, for comparison. All three densities are normalized to unit total 
power. The RSK density appears to be between the SFSK and DSFSK densities in several ways: spec- 
tral density at zero frequency, width of main spectral lobe, height of first sidelobe, and asymptotic roll- 
off rate. The RSK spectrum is, however, clearly superior to the DSFSK spectrum for the first few 
sidelobes. Thus, while the DSFSK spectrum is generally thought so poor as to preclude the implemen- 
tation of DSFSK, the RSK(2,6) format may be useful where a higher rolloff rate is needed than is pro- 
vided by SFSK and where the substantial ripple of RSK(2,6) is tolerable. 

If the transfer function of the arm filter is put into the form given by Eq. (26), there is one pair 
of imaginary zeros (m = 1) and the gain constant and zero location are given by 

y = 0.56716,  zi= 1.774657r. 

14 
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Fig. 8 — One period of the envelope of the sixth-order RSK signal 

-120 

Fig. 9 — Spectral densities of sixth-order RSK (solid), 
SFSK (dashed), and DSFSK (chain-dashed) 

Eighth-Order Arm Filters 

To obtain the 30 dB/octave asymptotic spectral roUoff of the previous section without the associ- 
ated envelope ripple requires adding another degree of freedom to the optimization by moving from a 
sixth-order arm filter to an eighth-order arm filter. Eighth-order arm filters are obtained by setting 
n = 4 in Eqs. (16) and (18).  Evaluating Eq. (20) with « = 4 yields the mean squared amplitude 

E[\mRit)\^} = Ual + 160304+ 1602^4+ 160104+ 1203^ + I602O3 + 160103 + 12o2^ 

+ 160102 + \2al. 

Similarly, evaluating Eq. (21) with « = 4 yields the variance of the squared amplitude 

Var{|/«j,(Op} = 136a^ + 25603o^ + 2S()aial + 2560,04^ + Uial a} + 25602030^ 

+ 128010304^ + 128o| o| + 256oi02fl| + 128o? o| + 32o2o| 04 

— 128fli03^ 04 + 64o2 03O4 - I9201O2O3O4 - 128of 0304 + 64o2 04 

+ 640102^04- 32o? 0204 + 803^ + 12802^ o| - 1280,020I +6401^032 

+ 256a| 03 + 160oia| 03 - 19201^ 0203 + 32ai^ 03 + 136o2^ + 256aia| 

+ 64a^ai - 6Aala2 + 8of. 

15 
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The optimization of this variance with only a mean-squared amplitude constraint would lead to a 
pulse p it) with an asymptotic spectral rolloff rate no better than that associated with the fourth-order 
problem solved earlier. To obtain a higher rolloff rate, the constraint given by Eq. (24) can be used to 
force the eighth-order transfer function F{s) to have four more poles than zeros. Solving Eq. (24) 
(with « = 4) for fli gives 

a\= — \6a^ — 9^3 — Auj. 

Substitution of this expression for a^ into the expressions just given for the mean and variance of the 
squared amplitude gives the constrained mean 

E{\mR{t)V] = 2n'&al -1-30720304-1- 12320204+84001 -I-67202O3 + 140o2^ 

and the constrained variance 

Var{|w^(f)P} = 553096o4^ + 1048576o3O4^ -I- 789760a2ai + 765056o32o| 

+ II6377602O30I + 40563202^ 04^ -f 258048o| 04 + S^UUaja^ 04 

+ 40499202^ a3«4 + 85312oi 04 + 34352o3'* + 990720203^ + IQlllGal ^3 

-H 4288002^ 03-H 6280 02^ 

In theory, the optimization problem can now be formulated using a Lagrange multiplier as was 
done earlier when solving for the fourth- and sixth-order arm filters. In practice, however, the result- 
ing set of four simultaneous nonlinear equations in four unknowns proved too difficult to solve using 
the computational facilities at hand. 

As an alternative, an iterative search program was used to search the (02,03) space for a 
minimum of the constrained variance expression above. For each (02, 03) point, 04 was calculated by 
evaluating the constrained mean (given above) at the (oj, 03) point in question, setting the resulting 
expression to unity, and solving the resulting quadratic equation in 04. Each point in (02,03) space 
thus provided two points in (oj, 03, 04) space at which to evaluate the constrained variance. 

From a starting point at which 02 and 03 were equal to the values given earlier as the optimums 
for the sixth-order arm filter, the search^rapidly converged on a minimum, shown in Table 3. The 
corresponding variance was 1.25202 x 10~^, smaller even than the fourth order optimum. This is not 
surprising, in view of the extra degree of freedom here. 

Table 3 — Minimum-Variance Point -- 
with n = 4 and Oi Constrained ' 

k dk 

1 
2 
3 
4 

0.28130 
0.05200 

-0.03141 
-0.01291 

Due to the nature of the method employed to find this minimum, there is no way to be certain it 
is a global minimum. This is not important, however, because this solution does have the properties 
desired. The baseband pulse function pit) obtained by substituting the values of Table 3 into Eq. (18) 
with « = 4 is plotted in Fig. 10. Once again, since it is nonzero in the center as required by Eq. (17), it 
satisfies the 90° net-phase-change criterion of Eq. (9) and the Nyquist (zero-intersymbol-interference) 
criterion of Eq. (3) automatically. 

16 
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Fig. 10 — Baseband pulse function from optimum eighth-order arm filter 

Figure 11 shows one period of the magnitude (calculated using Eq. (13)) of the complex- 
baseband OQPSK signal of Eq. (6) using the baseband pulse function of Fig. 10. The amplitude varia- 
tions are even smaller than those shown in Fig. 5 for the fourth-order case. 

If the transfer function of the arm filter is put into the form given by Eq. (26), there are two pairs 
of imaginary zeros im = 2) and the gain constant and zero locations are given by 

7 = 0.57795,  zi= 1.7273377-, and Z2 = 3.43183 77. 

1.01 

Fig. 11 — One period of the envelope of the eighth-order RSK signal 

The spectral density of the eighth-order RSK process is shown in Fig. 12 along with the spectral 
density of the SFSK and DSFSK processes, for comparison. All three densities are normalized to unit 
total power. Like the sixth-order RSK spectrum shown in Fig. 9, the eighth-order RSK spectrum 
appears to be between the SFSK and DSFSK densities in several ways: spectral density at zero fre- 
quency, width of main spectral lobe, height of first sidelobe, and asymptotic roiloff rate. The RSK 
spectrum is, however, clearly superior to the DSFSK spectrum for the first few sidelobes. Figure 13 
illustrates the tradeoff between the sixth- and eighth-order RSK formats by showing their spectra 
together for comparison. Clearly, the more constant envelope attained in the eighth-order case was at 
the expense of desired spectral qualities. The eighth-order RSK spectrum has a substantially higher 
second sidelobe, as well as somewhat higher sidelobes in the high-frequency roiloff region. The 
eighth-order RSK format is therefore preferred over the sixth-order format only when the much lower 
envelope ripple justifies both the added complexity and a somewhat poorer spectrum. 

6. SUMMARY 

Three new baseband pulse functions were derived for OQPSK signalling. I describe them as 
"almost MSK-like" because the OQPSK signals generated using these pulse functions (a) change phase 

17 
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Fig. 12 - Spectral densities of eighth-order RSK (solid), 
SFSK (dashed), and DSFSK (chain-dashed) 

Fig. 13 - Spectral densities of sixth-order RSK (solid) 
and eighth-order RSK (dashed) 

by exactly 90° in a bit interval and (b) have almost constant amplitude. In addition, the new formats 
have asymptotic spectral rolloff rates greater than the 12 dB/octave of MSK. These properties in 
OQPSK modulation types generally result in robust waveforms better able to tolerate the nonlinearitie= 
in high-power traveling-wave tube (TWT) amplifiers than conventional modulation types. Thus, these 
new modulation formats should prove especially useful where TWT operation at saturation is desired 
(and the wider central spectral lobe can be tolerated), such as in pulse-compression radar systems and 
in certain satellite data-communication systems. 

18 
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The mathematical form of the new pulse functions is a sum of raised cosines: 

kiTt 

pit) = 
1 - cos 

A:-l 

0 elsewhere. 

, 0< r <2r; 

The form itself suggests implementation of these formats by physical generation of the raised-cosine 
waveforms for summing into two trains (in-phase and quadrature baseband components) of shaped 
pulses that can be polarity-switched by the data streams. This is similar to a commonly used strategy 
for generating MSK. 

Another method of generating these modulation formats is suggested (from Eqs. (5), (8), and 
(26) and Fig. 2) by writing the Laplace transform of the baseband pulse function /?(?) in the following 
form: /      o 

m      "- 
+1 

n 
k-l 

Ts 
kiT 

+ 1 

This is the Laplace transform of the rectangular pulse function (of rectangular OQPSK) multiplied by a 
rational transfer function. This transfer function can be approximately implemented (putting the poles 
as close to the imaginary axis as possible) in simple arm filters and used to shape NRZ data waveforms 
in the / and q channels. I have called these new modulation formats rational-shift keying, emphasizing 
both the similarity to MSK and the rational transfer functions in the Laplace transform of the pulse for- 
mats. Each format is denoted by RSK(m,n), where m and n indicate the numbers of zero pairs and 
pole pairs in the rational transfer function. 

The parameters n, a^, -y, m, and z^t in the above equations are shown in Table 4 and were chosen 
(for each combination of m and «) to minimize the variance of the amplitude squared of a unit-power 
baseband OQPSK random process. Along with the RSK parameters, Table 4 gives this associated vari- 
ance, the peak-to-peak amplitude ripple, the amount the first spectral sidelobe is down from the peak, 
and the asymptotic spectral rolloff rate. 

Table 4 — Summary of RSK Parameters and Characteristics 

Parameter RSK(2,4) RSK(2,6) RSK(4,8) 

04 

0.25143 
0.05195 

0.29031 
0.04595 

-0.05268 

0.28130 
0.05200 

-0.03141 
-0.01291 

y 
Zl 

Z2 

0.606768 
1.6255777 

0.56716 
1.7746577 

0.57795 
1.7273377 
3.4318377 

Var{U«(<)P} 
Peak-to-peak envelope fluctuation 

5.85147 X 10-5 
0.0111 

6.56782 X 10-3 
0.1237 

1.25202 X 10-^ 
0.0019 

Spectral rolloff rate 
Peak-to-first-sidelobe ratio 

18 dB/octave 
21.0 dB 

30 dB/octave 
17.12 dB 

30 dB/octave 
18.04 dB 

OQPSK spectral density 
Baseband pulse function 
Envelope 

Figure 6 
Figure 3 
Figure 5 

Figure 9 
Figure 7 
Figure 8 

Figure 12 
Figure 10 
Figure 11 
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Appendix A 
THE MEAN AND VARIANCE OF THE SQUARED AMPLITUDE 

In this appendix, I calculate the mean and variance of the squared amplitude of the OQPSK pro- 
cess described by Eqs. (18) and (19). I calculate the variance by calculating the second and fourth 
moments of the amplitude of the process and then using 

Var{|m^(f)P} = £{|m;j(Or}- (£{|m«(f)P})^ (Al) 

to obtain the variance from those second and fourth moments. 

The Fourth Moment of the Amplitude 

I first calculate the fourth moment of the amplitude of the OQPSK process described by Eq. (19) 
with no restrictions* on the real baseband pulse function pit). The pit) of Eq. (18) is considered later 
as a special case of the general result. 

The General Result: Real Baseband Pulse Functions 

The integration over the uniform random variable u in Eq. (19) is made explicit when the desired 
moment is formulated in terms of a conditional expectation: 

T 

E[\mj,{t)\'] = \-S E{\mi,{t)\' 
T-o 

u]du. (A2) 

Now, calculate that conditional expectation by substituting for niR it) from Eq. (19) and factoring all 
the nonrandom variables (including «, in this context) out of the expectation: 

£{|mjj(?)H«} = X I I It^l^/^.^^/S^l/Z^'^r" 
i      k     m     n 

■pit - IT - u)p(t - kT - u)pit - mT - u)p{t - nT - u)].    (A3) 

The baseband pulse function pit) has been assumed real. Consider the remaining expectation 
£{/3,j8^-/3„j8„}. Because the expectation of a product of independent random variables is equal to the 
product of the expectations of those variables, and because the expectations of each of the {jS^.} is zero, 
E{l3jl3i^l3„p„] will be zero whenever at least one of the indices /, k, m, and n is different from all of 
the others. In the complementary case in which each index is equal to at least one of the others, each 
j8 appearing in the product appears twice, removing the sign information. Therefore, using symbols A 
for logical conjunction ("and") and V for logical disjunction ("or"). 

£{/3,)8^/3„/3j 

V i= k A ni = n , 
1    V i= m A k= n , 

V i= n A k= m\ 
0   otherwise . 

•Other than those necessary to assure the convergence of various sums and integrals; convergence is not discussed explicitly but 
is assured (ox pU) of practical interest. 
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Noting that the three cases where the expectation equals unity overlap only where the four indices are 
all equal, the quadruple sum of Eq. (A3) can be written as a single sum for the case where the indices 
are all equal plus three double sums for the three cases where the indices are equal in pairs: 

E{\mjiit)\'u] =     ^p*(t-kT-u) 
k 

+ 11 (-^')''~'"pHt-kT-u)pHt-mT-u) 
' . k   m^k 

+ X^P^^t-iT-u)pHt-nT-u) 
i    n^i ■'.   . ...    ,      . 

Changing some indices and combining the last three sums produce the more compact 

E[\mR{t)\*u}= Yp'it- kT-u) + £ X f2 + (- \)''-'"]pHt-kT-u)p^{t-mT--u). 
k k   m^k 

This can now be substituted back into Eq. (A2) and the integration brought inside the summations over 
k. T 

E{\mj,{t)\'}=    -^ £//(/-A:r-«)^w 
-•/to 

T 

+ i l/   I. ^2+(-!)''-"•]pHt-kT-u)pHt^mT'-u)du. 
•'/to   m^k 

Applying the change of variables T = t - kT - u in both integrals gives 

E{\mj,(t)\']=    ^I     J       p'Mdr 
•'      *:   t-Ck+UT 
. t-kT 

+ 7=Z     /       i:i2+{-l)>'-'"]pHr)pHr + (k^m)T)dr, 
-'     *   t-(.k+l)T m^k 

It is now clear that the sums over k can be eliminated in favor of infinite limits on the integrals. 
Changing the index in the remaining sum to n = k - m simplifies the equation further: 

1        °° 1        °° 

E{\mR(m = -^ f pHT)dT + ^ J   '£[2+(-l)'']pHT)pHr + nT)dr. 

Finally, the expression can be compacted by combining the integrals into one and expressing the first 
term as the missing « = 0 term of the sum, using a Kronecker delta function to get the coefficient right. 

1    °° 
E{\mRit)\*} = j f  ^[2il-8„) + (-\)"]PHT)PHT + nT)dT. (A4) 

-oo    n 

Equation (A4) is the general expression for the fourth moment of th§ amplitude of this OQPSK pro- 
cess for real baseband pulse functions. 

Special Case: Baseband Pulse Functions With Limited Support 

Now, consider the special case of baseband pulse functions (such as those of Eq. (18)) satisfying 
the finite support restriction 

p{t) = 0-   \t- T\> T. (A5) 

For this class of pit) the product p^ir) p^ir + nT) is zero for all n ^ 2. The sum in Eq. (A4) there- 
fore has at most three nonzero terms. Writing these out explicitly, distributing the integration over the 
sum, and shrinking the limits of integration to the smallest regions that might be nonzero produces 
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27" T 27" 

^{|^^(,)|4} = 1 JT /(r) dr + ^\ PHT)PHT + T) dr + ^J pHr) pHr - T) dr. 
7^-0 "  0 ^    T 

A change of variable, ( = T - T, in the integral third integral makes it identical to the second. Carry- 
ing out this change and splitting the first integral into two, one from 0 to T and one from T to IT, 
gives 

IT 

E{\mi^m'] = 4=/ /(r) dr + \^] pKr) dr + 4^ jj pKr)pHr + T) dr. 
■'     0 ■'     7- ''     0 

Changing variables in the second integral by letting t = T - T gives all three integrals the same limits 
and allows them to be combined into a single integral with the integrand a perfect square; 

E[\m„{tm = \,] {pHT)+pKT+T)?dT, (A6) 
-'   0 

which is the desired result fov pit) satisfying Eq. (A5). , 

More Special Case: Baseband Pulse Functions as Sums of Raised Cosines 

I now evaluate the fourth moment given by Eq. (A6) for baseband pulse functions described by 
Eq. (18). I begin by using Eq. (18) to build up the integrand of Eq. (A6), simplifying where possible. 
From Eq. (18) the square of the baseband pulse function can be written 

pHt)^g{t) t Y.2'a,aA\- cos 
kTTt 

1 — COS 
iTTt 

k-l i-\ 

Also needed in the integrand of Eq. (A6) is this same quantity advanced by time T\ 

pHt+ T) = git+T) £ £22fl,a,. 
k-\ 1-1 

1 — cos 
kTT(t+ T) 1 - cos /7r(<+ T) 

Since cos(0 + ATTT) = (-l)*cos(</)), this can be rewritten 

pKt^T) = gU+T) £ £ 2^0,0, 
*-i (-1 

1 - (-1)* cos 
kirt 1 - (-1)' cos 

iTTt 

This can now be summed with Eq. (A7) and the raised-cosine products multiplied out to give 

pHt) +pHt+ r)= j; £22afca, 
k-\ /-I 

2 - [1 + (-l)'^] cos -^ - [1 -^ (-1)'] cos -^ 

+ [l + (-l)'^+']cos^cos-^ 

(A7) 

(A8) 

where the product of the gate functions, not shown here, limits the validity of this equation to the 
range 0 < r < T. Because this interval is compatible with the limits of integration in Eq. (A6), the 
gating functions will not be shown explicitly in the remainder of the derivation. 

Notice that the second term in the large summand factor in Eq. (A8) differs from the third term 
only in the index. The total value of the sum will not change if the index / in the third term is 
replaced by k, yielding a slightly simpler 
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pHt)+pHt+ r)= f f^l^a.a^ 
k-1 i-l 

2-2[l + (-i)*]cos-^      '    ■   ; 

+  [l+C-D'^+'lcos-^cos-^j. (A9) 

The expressions of the form [1 + (-1)'^] that appear in Eq. (A9) are nonzero only for k even 
This suggests the following definition: 

even(k) = 
1;    k even 
0;    k odd. 

Using the even function just defined, squaring Eq. (A9) and substituting it into Eq. (A6) results, 
after some permutation of the indices, in 

E{\mAtm = ^j ±±Y^j^a,a,a„a, 
0  A:-l 1-1 m-lr-1 

2* 

— 2^ even(k) cos knt 

+ 28 evenik) evenii) cos ~-cos ^^ 

+ 2^ eve« a +/) cos-^ cos— 
T T 

- 2« evenik) evenii + m) cos -^ cos -^ cos -^^^ 
T T T 

+ 26 even (k+i) even (m+r) cos -^ cos -^ cos -^^^ cos ^^ dt. (AlO) 

The products of cosines in this equation can be expressed as suras of cosines using the trigonometric 
identities 

cosa cos/3 = 2~'[cos(a + |8) + cos(a -/3) ], 

cosa cos/3 cosy = 2"2[cos(a + )3 + y) + cos(a + )8 - y) + cos(a - /3 + y) + cos(a - i8 - y) ], 

and 

cos a cos /3 cos y cos 0  = 2"^ [cos (a + /3 + y + </>) + cos (a + /3 + y - 0) 

+ cos(a + j8 - y + 0) + cos(a + /3 - y - (^) 

+ cos(a - /8 + y + 0) + cos(a - /3 + y - </>) 

+ cos(a - )8 - y + 0) + cos(a - /3 - y - 0) ]. 

Using the additional fact that 

— J  cos —zr dt = S^, 
^0 ^ 
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Equation (AlO) can be integrated term by term to yield - 

k-\ i-\ m-\ r-1 

- l^evenik) b^ 

+ 2' even(k) even(/) (8^. + , + 8*._,) 

+ 2*even(A: + /)(8^+,+8;t_,) 

- 2^even(k)evenii + m) (8^+,+„+8;t+,_„+8^,_,+„+Sfc_,_„) 

+ l^evenik + i) evenim + r) (   8jt+,+m+r + ^k+i+m-r 

"t" ^k+i-m+r "*" ^k+i-m-r 

+ ^k-i+m+r + ^k-i+m-r 

+ ^k-i-m+r + S/t-Z-m-/-) 

Since the indices are always positive, some of the delta functions have subscripts that, because they 
consist only of positive terms, cannot be zero. Eliminating terms containing those delta functions and 
combining the two terms containing 8 fc_, gives: -   - 

n      n      n 

E[\mR{t)\']^ L L L 22 «*«'«'"«' 
k-\ i-\ m-\ r-1 

2* + 2* [ 2 even ik) even (/) + even {k + i) ] 8,._,- 

-l^evenik) evenU + m) (8*,+,_„+8A:_,+„+8<,_,_„) 

+ 2^even(.k + i) evenim+ r) (   8fc+,+„_r+8fc+,_„+, 

"*■ 8fc+/-m-r '^^k-i+m+r 

'^^k-i+m-r'^^k-i-m+r 

(All) 

This can be further simplified by removing some redundant references to the even function. For exam- 
ple, consider the first delta function in the above equation. It is nonzero only if k - i is zero. Using 
symbol =-^ implies for logical implication (if a then b): 

k — i = 0 ="^   k — / even 

=^   (k odd A / odd) V (fc even A / even) 

—^   k + i even . 

Therefore, 

even ik + i) 8;^ -i = 8fc - i • 

Similarly, 

k even A k ± i ± m = 0 =-^   / + m even, 

which, in turn, implies 

evenik) evenii + m) {8k+i-„ + b^-t+m + 8fc-,-m) = evenik) (8k+i-„ + 8A;_,+„ + 8;t-;-m) • 

The reference to evenim + r) in Eq. (All) can also be shown to be redundant. Applying these sim- 
plifications to Eq. (All) gives 
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^{k«(f)r}= £ f £  ia*«,a„flj    2^ + 2n2even(k)even{0 + l]8,_i 
k~l /=1 m-l r-1 I 

+ 2'evenik + 0 (   8^+,+„_,+8,+,_„+, 

(A 12) 

The Mean of the Squared Amplitude 

1 now calculate the expected value of the square of the amplitude of the random OQPSK process 
described by Eq. (19), first with no restrictions on the real baseband pulse function ;>(?) and then with 
the ;?(/) of Eq. (18) considered as a special case of the general result. 

The General Result: Real Baseband Pulse Functions 

Separate the consideration of the random variable u by formulating the desired moment in terms 
of a conditional expectation: 

r ' '■ ■ :     . 

{\mRUm=-^^ E[\mR{t)\^ u]du. (A13) 

Now, calculate that conditional expectation by substituting for w« (?) from Eq. (19) and factoring all 
the nonrandom variables (including «, in this context) out of the expectation: 

E{\mR{t)V\u}= '£'£E[p„l3jfr'"p{t-kT- u) pit - mT - u) . 
km 

The baseband pulse function pit) has been assumed real. Consider the remaining expectation 
E\^k^m\- Because the expectation of a product of independent random variables is equal to the pro- 
duct of the expectations of those variables, and because the expectations of each of the {/S^} are zero. 

Therefore, 

E{\mRit)Vu}= -^pHt- kT-u).    - 
k 

This can now be substituted back into Eq. (A13) and the integration brought inside the summation 
over k. 

E[\mRit)\'] = ^ -^f pHt-kT-u)du 
T 

T ^- 
^     k    0 

Applying the change of variable T = r - A:^ - u in the integral gives 

E{\mR{tW] = \^     J      pHr)dr. 
'     k   t-(k+\)T 

It is now clear that the sum over k can be eliminated in favor of infinite limits on the integral, 

E[\mj,itm = \, j pHr)dT. • (A14) 
T 
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Equation (A14) is the general expression for this OQPSK second moment for real baseband pulse func- 
tions. 

Special Case: Baseband Pulse Functions With Limited Support 

For the special case of baseband pulse functions (such as those of Eq. (18)) satisfying the finite 
support restriction 

;7(f) = 0;   \t- T\> T, 

the limits of integration can be shrunk to give 

E{\mj,it)\'} = \j pHT)dT. (A15) 

More Special Case: Baseband Pulse Functions as Sums of Raised Cosines 

I now evaluate the second moment given by Eq. (A 15) for baseband pulse functions described by 
Eq. (18). Substituting Eq. (18) into Eq. (A15) gives 

E[\mi,(t)V} 
j    ^I    n      n 

1 — cos 
ICTTt 

1 COS 
int 

dt. 
0   *:-! 1-1 

Multiplying the raised-cosine products and converting the product of cosines to a sum of cosines give 

^{|/«;e(r)P) = l/ t £a,a, 
0   *:-l i-\ 

. . ICTTt . ivt 
4 - 4 COS —= 4 cos ~=- 

.  ^         (Jc + ihrt  ,.         ik - i)iTt 
+ 2 cos 1- 2 cos =  dt. 

The integration is over integral multiples of the periods of the cosines, so all the cosine terms disappear 
in the integration except the last, which has nonzero value only when k — i = 0: 

E[\mj,itW}= £ £a,a,[23 + 228,_,] 
k-l (-1 

(A16) 

While the above form will prove convenient for further manipulation, a more conventional-looking 
result can be obtained by splitting the sum into two to eliminate the delta function 

^{|m;;(f)P) = 8 j; £ a,a,-+ 4 £ a,2^ 
fc-i /-I k-l 

and then factoring the first sum: 

^{|m^(f)P} = 8    X«^ 
U=i 

+ 4 £ a,2. 
k~l 

The Variance of the Squared Amplitude 

The expressions given by Eqs. (A16) and (A12) for the second and fourth moments of the ampli- 
tude of the OQPSK process described by Eqs. (19) and (18) can now be combined according to Eq. 
(Al) to give the variance of the squared amplitude of the process. Squaring the second moment given 
by Eq. (A16) results in 
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'   ■'     (£{|m^WP))2= tit ta,a,a^ar 

Combining this expression with Eq. (A12) in the right-hand side of Eq. (Al) gives 

n      n      n       n 

2+2 8t_,   + 2 8|t-/8m_r 

fc-l ;-l m-1 r-l 
l'even ik) even {i)bk-i 

~^ ^k-i^m-r 

- 2^even(k) iSk+i-„ + 8fc_,+„ + 8k-,-„) 

+ 2^even(k + i) i   8;t+/+m-r + 8fc+,-m+r 

,;•  ' "•■Sfc+i-m-r + ^k~l+m+r 

'^^k-i+m-r + 8fc-/-m+r 

'^^k-i-m-r^ 

which is the desired result: the variance of the squared amplitude of the OQPSK process described by 
Eqs. (19) and (18). 
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Appendix B 
THE AUTOCORRELATION AND SPECTRAL DENSITY OF AN OQPSK PROCESS 

In this appendix I calculate the autocorrelation and spectral density of the OQPSK process given 
by Eq. (19). The autocorrelation of a complex random process xit) is defined by 

R^'(h,t2) = E{xiti)x*U2)}. 

Applying this definition to the OQPSK random process of Eq. (19) and using a conditional expectation, 
T 

K ,„'^h,t2) = -^ S E[mR{t,)mk{h)\u] du . (Bl) 

Formulating the conditional expectation from Eq. (19) yields 

k    m 

But, it is argued in Appendix A that E [fik^m] = ^m-k- Therefore, 

E{mRUx)mR{t2)\u]= "^pih- kT - u)p{t2- kT - u) . 
k 

Substituting this back into Eq. (Bl) produces 

R      .(r„?2) = 4 \\ pih-kT- u)p{t2-kT-u)du 
"'R"'R '    k   0 

A change of variable v = ti- kT- u in the integral gives 
t-kT 

'»R">R T   j^ ,_^i+i)T 

which makes it clear that the sum can be eliminated by extending the limits of the integral to infinity: 
oo 

"'R'"R T ^^ 

Since ?i and t2 appear only in their difference, the process mR (t) is wide-sense stationary. For such 
processes it is conventional to write the autocorrelation as a function of a single variable representing 
the difference between the two times. Letting T = ^2 - fi in the above equation and changing the vari- 
able of integration back to the more conventional t, 

oo 

'"R"'R T roo 

This is the general result for the autocorrelation of an OQPSK process with a real baseband pulse func- 
tion. 

The spectral density of a random process is defined as the Fourier transform of its autocorrelation 
function. To transform Eq. (B2), first express it as a convolution: 

K „'(r)-\[pir)®pi-r)]. 
'"R"'R T 
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Denoting the Fourier transform of P(T) by P(j^), the transform of P(-T) is just P(-yfi). Since 
pir) is real, P(j^) is conjugate symmetric, i.e., P(J0,) = P*i-ja,). The Fourier transform of ;7(-T) 
is therefore P*(JQ,). Since the Fourier transform of the convolution of two functions is just the pro- 
duct of the Fourier transforms of the two functions, the desired spectral density can be written 

^.,.;(") = j POii)P*Un) = ^ \p(jn)\\ 

The spectral density S .(ft) is shown as a function of ft rather than /ft to emphasize that when 

integrated to obtain power it must be with respect to ft only. 

For the baseband pulse functions of interest, those given by Eq. (18), the (bilateral) Laplace 
transform is given by Pis) = Gis)F(s) where Fis) is given by Eq. (16) or Eq. (26) and where G{s) 
is the (bilateral) Laplace transform of the gate function g(t) defined in Eq. (5): 

^/ N       1 — e~-^^-^      ^rr -Ts sinh 7s G(s) =  = 2Te " —-— . 
s Ts 

The Fourier transform oi pir) is obtained by evaluating the Laplace transform P(.s) at s = Jil.  Per- 
forming the substitution using Eq. (26) for Fis) gives 

i \2 m n T 

PC/ft) = 2Tye-J^^ ^'" ^^  -^^^ 

ftr 
^k 

ar 
k-l 

ftr 
kTT 

and, consequently, 

'"R'"R T [l^P 

m ftr 2 2 

TT 1 - 
k-\ i ^*^ J 

? 7 n 
ft ■/' n 1 - 
kTT 

The above form can be normalized to be independent of the bit interval T by expressing it as a 
function of a normalized frequency variable ft j- = ft T rather than a function of ft. This must be 
done in such a way that the power in a given frequency interval, obtained by integration of the density, 
remains unchanged: 

poweriili,il2) =  r 5      .(ft) rfft =   f  5      .(ftj-) diClr). 

Hence, 

or, 

n,T '"R'"R 

.(ftr) = 4*^      '(^h "R'"R ' T     '"R"'R 

'^...•("r) = 4y2 
'"R'"R 

m fty- 
r 2 

•    ")   <^ 11 1- 
sm^ ft 7- k~\ ^k 

ft^ n ftr 
2 2 

11 
k-\ 

1 - 
kiT 
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